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Abstract. A scheme for construction of uncertainty relations for n observables and m states is
presented. Several lowest-order inequalities are displayed and briefly discussed. For two states
|ψ〉 and |φ〉 and canonical observables the (entangled) extension of the Heisenberg relation reads
[�p(ψ)]2[�q(φ)]2 + [�p(φ)]2[�q(ψ)]2 � 1

2 .

1. Introduction

The uncertainty principle is one of the basic principles in quantum physics. It was introduced
by Heisenberg [1] on the example of the canonical observables p and q, and rigorously proved
by Kennard and Weyl [1] in the form of the inequality (�p)2(�q)2 � 1

4 , where (�X)2 is the
variance (dispersion) of X (for the sake of brevity we work with dimensionless observables).
This inequality is known as the Heisenberg uncertainty relation (UR) for p and q. It was
made more precise and extended to two arbitrary quantum observables by Schrödinger and
Robertson [2] and to several observables by Robertson [3].

The Heisenberg UR became an irrevocable part of almost every textbook in quantum
physics while the interest in the more precise Schrödinger [2] and Robertson [3] UR has
grown up only recently in connection with the experimental generation of squeezed states of the
electromagnetic field [4] and their generalization to two and several arbitrary observables [5–8].
The Robertson UR has been recently extended to all characteristic coefficients of the uncertainty
matrix [9]. Extensions of the Heisenberg UR to higher moments of p and q are made in [10].

The URs listed above, and perhaps all the others so far considered, relate certain
combinations of statistical moments of the observables in one quantum state. The main aim of
this paper is to extend the uncertainty principle to several states. The physical idea of such an
extension is simple: one can measure and compare the statistical moments of two (or more)
observables not only in one and the same state, but in two (or more) different states. The
Hilbert space model of quantum mechanics permits us to derive easily such state-extended
URs. The extended URs can be divided into two classes—entangled URs and nonentangled
URs. A UR is called state entangled if it cannot be factorized over distinct states.

Next we recall the ordinary characteristic Urs, which include the known Schrödinger and
Robertson ones and then extend these URs to several states. Some other state-extended URs
are also established. Finally the simplest types of extended UR are displayed and discussed
briefly.
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2. Characteristic URs

The Schrödinger (or Schrödinger–Robertson) [2] UR for two observables X and Y reads

(�X)2(�Y)2 − (�XY)2 � 1
4 |〈[X, Y ]〉|2 (1)

where 〈X〉 is the mean value of X in a given state, (�X)2 = 〈X2〉 − 〈X〉2 is the variance
(the dispersion) of X and �XY ≡ 〈XY + YX〉/2 − 〈X〉〈Y 〉 is the covariance of X and Y .
This UR was derived by Schrödinger from the Schwartz inequality for the matrix element
〈ψ |(X − 〈X〉)(Y − 〈Y 〉)|ψ〉. The less precise inequality (�X)2(�Y)2 � 1

4 |〈[X, Y ]〉|2 is
usually called the Heisenberg UR for X and Y .

Robertson [3] has formulated the uncertainty principle for several observablesX1, . . . , Xn
in terms of an inequality between determinants of the uncertainty matrix σ( �X;ψ) and the
matrix C( �X;ψ) of the mean values of commutators of Xi and Xj ,

det σ( �X;ψ)− detC( �X;ψ) � 0 (2)

where �X = X1, . . . , Xn, σij = ( 1
2 )〈XiXj +XjXi〉−〈Xi〉〈Xj 〉 andCjk = −( i2 )〈[Xj,Xk]〉. For

n = 2 the inequality (2) recovers (1). Robertson first proved the non-negative definiteness of the
matrix R( �X;ψ) (to be called the Robertson matrix), R( �X;ψ) = σ( �X;ψ) + iC( �X;ψ) � 0.
This means that all principal minors of R are non-negative. For n = 2 the inequality (2)
coincides with R( �X;ψ) � 0. Robertson URs hold for mixed states ρ as well. Recently [9]
the UR (2) has been extended to all characteristic coefficients [12] of the uncertainty matrix.

In comparison with the Heisenberg UR the Schrödinger and Robertson ones have the
advantage of being covariant under linear nondegenerate transformations of the observables,
in particular under linear canonical transformations [8,9]. Symmetric to this is the invariance
of our URs for one observable andm states (established below) under linear transformation of
states.

3. State extended URs

It should be useful first to recall that the derivation of the Robertson UR resorts to the following
lemma.

Lemma 1 (Robertson). If H is a non-negative definite Hermitian matrix, then

det S − detA � 0 (3)

where S and A are the real and the imaginary part of H , H = S + iA.

It is worth recalling that a matrixH is non-negative iff all its principal minorsMr(H) are
non-negative,

H � 0←→ Mr(H) � 0 r = 1, 2, . . . , n. (4)

The proof of this lemma can be found in [3]. With minor changes in the notations it is
reproduced in [11]. The Robertson UR (2) corresponds to H = R( �X; ρ) in (3). In [9] this
lemma was extended to all principal minors and to all characteristic coefficients C(n)r of S and
A,

C(n)r (S)− C(n)r (A) � 0 r = 1, 2, . . . , n. (5)

The characteristic URs of [9] correspond to S = σ( �X; ρ) and A = C( �X; ρ) in (5).
The state extensions of the ordinary URs, which we shall derive below, are based on the

different physical choices of the matrix H in (3)–(5) and on the following lemma.
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Lemma 2. If Hµ are non-negative definite Hermitian n× n matrices, µ = 1, . . . , m, then

C(n)r (S1 + · · · + Sm)− C(n)r (A1 + · · · + Am) � 0 (6)

C(n)r (H1 + · · · +Hm)− C(n)r (H1)− · · · − C(n)r (Hm) � 0 (7)

where Sµ and Aµ are the real (and symmetric) and the imaginary (and antisymmetric) parts
of Hµ.

Proof. The validity of (6) immediately follows from the Robertson lemma and its extension (5),
and the known fact that a sum of Hermitian non-negative matrices is a Hermitian non-negative
matrix. We proceed with the proof of the inequality (7). It is sufficient to establish it for
m = 2. Let G and H be Hermitian non-negative definite matrices. We have to prove that
C(n)r (G+H)−C(n)r (G)−C(n)r (H) � 0. Since the characteristic coefficients are the sums of all
principal minors [12] it is sufficient to consider the case of r = n, i.e. to prove the inequality
det(G +H)− detG− detH � 0.

(a) Let one of the two matrices (say G) be positive definite. Then both G and H can be
diagonalized by means of a unitary matrix U [12], G′ = U †GU = diag{g1, . . . , gn},
H ′ = U †HU = diag{h1, . . . , hn} and

det(G +H) =
∏

i

(gi + hi) =
∏

i

gi +
∏

i

hi +� (8)

where� = det(G+H)−detG−detH = det(G′ +H ′)−detG′ −detH ′, i = 1, . . . , n,

� = g1

n∏

j=2

hj + g1g2

n∏

j=3

hj + · · · + h1h2

n∏

i=3

gi + h1

n∏

i=2

gi. (9)

In view of gi > 0 and hj � 0 all terms in (9) are non-negative, thereby � � 0.
(b) If both G and H are only non-negative definite, then at least one gi and one hj are

vanishing, that is detG = 0 = detH and from nonnegativity of the sum G + H � 0
and (8) we obtain det(G +H) = � � 0. End of the proof.

�

Remark 1. From the above proof it follows that if det
∑
Hµ =

∑
detHµ then detHµ = 0,

the inverse being untrue.
Equations (6) and (7) can be called extended characteristic inequalities. They are invariant

under the similarity transformation of the matrices Hµ. At m = 1 (one state) they recover the
relations (5).

By a suitable physical choice of the non-negative Hermitian matrices Hµ in the
inequalities (4), (6), (7) one can obtain a variety of URs for several states and observables. We
point out three physical choices of matrices Hµ,

H = R( �X; ρ) = σ( �X; ρ) + iC( �X; ρ) (Robertson matrix) (10)

H = !(χ1, . . . , χn) = R( �X; �ψ) ‖χk〉 = (Xk − 〈ψk|Xk|ψk〉)|ψk〉 (11)

H = !(φ1, . . . , φn) = G( �X; �ψ) ‖φk〉 = Xk|ψk〉 (12)

where ! is the Gram matrix, !ij (#1, . . . , #n) = 〈#i‖#j 〉, and |ψk〉 are normalized pure
states. The diagonal elements Rii( �X; �ψ) and Rii( �X; ρ) are just the variances ofXi in the state
|ψi〉 and (generally mixed) state ρ, whileGii = !ii(φ1, . . . , φn) = (�Xi(ψi))2 + 〈ψi |X|ψi〉2.
Therefore the inequalities obtained in the above scheme can be regarded as state-extended
URs. For brevity URs for n observables and m states should be called URs of type (n,m).
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For pure states |ψk〉 (10) is a particular case of (11), and the common structure of (10)–
(12) is H = !(#1, . . . , #n) = T ( �X, �ψ), where #k denote the corresponding nonnormalized
states ‖#k〉. Let us note that !(#1,#2) � 0 is equivalent to the Schwartz inequality. For one
observable X the matrix G(X, �ψ) is covariant under linear transformation of states,

|ψ ′i 〉 = U ∗ik|ψk〉 → G( �X, �ψ ′) = UG( �X, �ψ)U †.

This property entails the invariance of the equality in the extended highest-order characteristic
UR of type (1,m), constructed by means of G(X, �ψ). If UU † = 1 then all order extended
characteristic URs of type (1,m) are invariant. Compare this symmetry with that of ordinary
characteristic URs under linear transformations of observables [8, 9]. The extended URs of
types (n,m) with n > 1 do not possess such symmetry.

In all three cases of H with pure states the URs H � 0 are disentangled by means of
linear transformations of states. The URs corresponding to (6) and (7) are state entangled.
The proof of the nonentangled character of the URs H � 0 for (10)–(12) with pure states can
be easily carried out using the diagonalization of ! = !(#1, . . . , #m).

4. Extended URs of simplest types

URs of type (1,2). For m = 2 (two states) the choices H = R(X; �ψ) and H = G(X; �ψ)
in (4), (6) and (7) produce two different URs, which we write down as

�X(ψ1))
2(�X(ψ2))

2 � |〈ψ1|(X − 〈ψ1|X|ψ1〉)(X − 〈ψ2|X|ψ2〉)|ψ2〉|2 (13)

((�X(ψ1))
2 + 〈ψ1|X|ψ1〉2)((�X(ψ2))

2 + 〈ψ2|X|ψ2〉2) � |〈ψ1|X2|ψ2〉|2. (14)

Since the right-hand sides of (13) and (14) are generally greater than zero these inequalities
reveal correlations between the statistical second moments of X in different states.

These two URs are independent in the sense that none of them is more precise than the
other. To prove this suffice it to consider the example of X = p and two Glauber coherent
states. The minimization of (13) and (14) occurs iff the two nonnormalized states in the Gram
matrix are proportional. In the case of (13) this is (X − 〈2|X|2〉)|ψ2〉 = λ(X − 〈1|X|1〉)|ψ1〉
wherefrom we easily deduce that ifX is a continuous observable (such as q, p or p2− q2 and
pq + qp) then UR (13) is minimized iff |ψ1〉 = |ψ2〉. It follows from this condition that (13)
and (14) can be used for construction of distances between quantum states (observable induced
distances) [11].

URs of type (2,1). For n = 2 the inequalities (4), (6) and (7) coincide. For two observables
X, Y and one state the Robertson choice (10) coincides with (11) and when replaced in (4)–(7)
it produces the Schrödinger UR (1). The choice (12) in (6) and (7) generates the invariant UR

[(�X)2 + 〈X〉2][(�Y)2 + 〈Y 〉2)] � (�XY + 〈X〉〈Y 〉)2 + 1
4 |〈[X, Y ]〉|2 (15)

which however can be shown to be less precise than the Schrödinger one (1). The interpretation
of any UR of type (2, 1) is the same as that of the Schrödinger UR.

URs of type (2,2). The number of possible URs of type (2, 2) is much greater. The inequalities
R(X, Y ;ψ1, ψ2) � 0 and G(X, Y ;ψ1, ψ2) � 0 can be displayed as (〈i|X|i〉 ≡ 〈ψi |X|ψi〉)

(�X(ψ1))
2(�Y(ψ2))

2 � |〈ψ1|(X − 〈1|X|1〉)(Y − 〈2|Y |2〉)|ψ2〉|2 (16)

[(�X(ψ1))
2 + 〈1|X|1〉2][(�Y(ψ2))

2 + 〈2|Y |2〉2] � |〈ψ1|XY |ψ2〉|2. (17)

It is not difficult to establish (after some manipulations) that the inequality (17) is less precise
than (16). The equalities in (16) and (17) are not invariant under linear transformations
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of observables and/or states. The equations (6) and (7) with H1 = R(X, Y ;ψ1) and
H2 = R(X, Y ;ψ2) both produce an entangled but very compact (2, 2) UR,
1
2 [(�X(ψ1))

2(�Y(ψ2))
2 + (�X(ψ2))

2(�Y(ψ1))
2]−�XY(ψ1)�XY(ψ2)

� 1
4 〈ψ1|[X, Y ]|ψ1〉〈ψ2|[X, Y ]|ψ2〉∗. (18)

The equality in this relation is invariant under linear transformations of X, Y , but not of |ψ1〉
and |ψ2〉. With |ψ1〉 = |ψ2〉 in (18) one recovers the Schrödinger UR (1). The inequality
(18) should be referred to as the state-extended Schrödinger UR. For the canonical p and q it
simplifies to
1
2 [(�p(ψ1))

2(�q(ψ2))
2 + (�p(ψ2))

2(�q(ψ1))
2]−�pq(ψ1)�pq(ψ2) � 1

4 . (19)

Similar to (but less precise than) (18) is the (2, 2) UR obtained again from (6) and (7) with
the third choice (12). The entangled UR (18) admits a less precise version of the form
(corresponding to �XY = 0)
1
2 [(�X(ψ1))

2(�Y(ψ2))
2 + (�X(ψ2))

2(�Y(ψ1))
2] � 1

4 |〈ψ1|[X, Y ]|ψ1〉〈ψ2|[X, Y ]|ψ2〉|.
(20)

The latter inequality can be regarded as an entangled extension of the Heisenberg UR. For
X = p and Y = q the right-hand side of (20) simplifies to 1

4 .
In view of the remark 1 if UR (18) is minimized then (1) is saturated by |ψ1〉 and |ψ2〉.

Therefore (18) can be used for finer classification of Schrödinger intelligent states. From any
extended UR one can obtain new ordinary UR by fixing all but one of the states. For example
if |ψ1〉 in (19) is fixed as a canonical coherent state then (19) produces (�p)2 + (�q)2 � 1.
The latter UR is minimized in canonical coherent states only, while the Heisenberg UR
(�p)2(�q)2 � 1

4 is minimized in any squeezed state with �pq = 0.

5. Conclusion

We have established several classes of extended characteristic URs of type (n,m) for n
observables and m states using the Gram matrices of suitably constructed nonnormalized
states. Entangled URs can be obtained using characteristic inequalities (6) and (7).

The extended URs reveal global statistical correlations of quantum observables in distinct
states. The characteristic inequalities could be useful in many fields of mathematical and
quantum physics, in particular in precise measurement theory. Extended URs can be used for
construction of observable induced distances between quantum states and for finer classification
of states, in particular of group-related coherent states.
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